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Polycystic ovary syndrome (PCOS), which is characterized by
anovulation, hyperandrogenism, and polycystic ovaries, is a complex
endocrinopathy. Because the cause of PCOS at the molecular level is
largely unknown, there is no cure or specific treatment for PCOS.
Here, we show that transplantation of brown adipose tissue (BAT)
reversed anovulation, hyperandrogenism, and polycystic ovaries in a
dehydroepiandrosterone (DHEA)-induced PCOS rat. BAT transplanta-
tion into a PCOS rat significantly stabilized menstrual irregularity and
improved systemic insulin sensitivity up to a normal level, which was
not shown in a sham-operated or muscle-transplanted PCOS rat.
Moreover, BAT transplantation, not sham operation or muscle trans-
plantation, surprisingly improved fertility in PCOS rats. Interestingly,
BAT transplantation activated endogenous BAT and thereby in-
creased the circulating level of adiponectin, which plays a prominent
role in whole-body energy metabolism and ovarian physiology. Con-
sistent with BAT transplantation, administration of adiponectin pro-
tein dramatically rescued DHEA-induced PCOS phenotypes. These
results highlight that endogenous BAT activity is closely related to
the development of PCOS phenotypes and that BAT activation might
be a promising therapeutic option for the treatment of PCOS.
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Polycystic ovary syndrome (PCOS) is now recognized as one of
the most common endocrine diseases in women of repro-

ductive age. The prevalence of PCOS ranges from 9% to 18%,
depending on the criteria used for its definition and ethnicity (1,
2). The core feature of PCOS includes polycystic ovaries, hyper-
androgenism, and chronic anovulation. Furthermore, PCOS is a
complex and heterogeneous syndrome because it is associated
with a high risk for the development of insulin resistance, type 2
diabetes (T2D), obesity, dyslipidemia, and cardiovascular dis-
ease (3–5). There are three different criteria used for the di-
agnosis of PCOS: androgen excess, irregular menstruation, and
polycystic ovary appearance on ultrasound after excluding other
causes of hyperandrogenism and anovulation (6). Because a
single etiologic factor is not able to fully account for all of the
clinical features in PCOS, the pathogenesis of PCOS is largely
unknown. Several genetic and environmental factors may con-
tribute to the development of PCOS; however, the underlying
cellular mechanism of the induction and progression of PCOS
remains to be elucidated.
Insulin resistance, which is common among PCOS patients,

seems to be a key etiological characteristic, and about 85% of
women with PCOS suffer from insulin resistance (7). Compen-
satory hyperinsulinemia can directly stimulate ovarian and ad-
renal secretion of androgen and decrease hepatic sex hormone
binding globulin (SHBG) synthesis, resulting in an increased
bioavailability of free testosterone levels (8, 9). Thus, insulin
resistance and hyperandrogenism contribute to the key clinical
presentation of PCOS. Because the clinical features are complex

and vary among PCOS patients, it is hard to provide the first-line
treatment of PCOS. Most treatment guidelines recommend that
patients change lifestyles, including exercise and dietary modi-
fication. Patients can take oral contraceptive pills (OCPs) to
control symptoms of hyperandrogenism or take insulin-sensitiz-
ing medicines such as metformin or pioglitazone when they have
impaired glucose tolerance or features of a metabolic syndrome
(10). However, there is a lack of effective treatment for PCOS
at present.
It has been reported that the functional abnormality of adi-

pose tissue in PCOS patients is primarily linked to insulin re-
sistance, even in the absence of obesity (11, 12). In humans and
other mammals, there are mainly two types of adipose tissue with
opposing functions: white adipose tissue (WAT) and brown ad-
ipose tissue (BAT). The main function of WAT is to store excess
energy in WAT as a form of triglycerides whereas BAT contains
large numbers of mitochondria that uncouple large amounts of
fuel for heat generation and the maintenance of body tempera-
ture (13). Recent studies using positron emission tomography
(PET) have demonstrated that human adults also possess met-
abolically active BAT (14, 15) and that BAT activation inversely
correlates with age and body mass index (BMI) (16). Therefore,
increasing BAT mass and/or function is a promising strategy to
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treat obesity and metabolic diseases. Indeed, studies by our
group and others have shown that BAT transplantation reverses
metabolic disorders in various obese mouse models (17–19).

Given the several common features between PCOS and a
metabolic syndrome, we aimed to investigate whether BAT
possibly plays an important role in the development of PCOS

Fig. 1. BAT transplantation reverses PCOS BAT activity. BAT activity was assessed at the end of the experiment (3 wk after tissue transplantation) by using
PET-CT. BAT transplantation could significantly increase endogenous BAT activity in the DHEA+BAT group compared with the DHEA+sham or DHEA+Mus
groups (A). Yellow triangle indicates the anatomical site of the interscapular BAT. The activity of brown adipose tissue, expressed as the standard uptake
values (SUVs), dramatically decreased in the DHEA+sham and DHEA+Mus groups compared with the control and BAT transplantation groups (B). Fur-
thermore, BAT transplantation could significantly increase BAT-specific marker gene expression (C ) and OXPHOS protein expression (D), as well as UCP1
expression (E ), compared with the DHEA+sham or DHEA+Mus groups. Data were analyzed by one-way ANOVA with Tukey’s post hoc test. n = 8–10 per
group. Different lowercase letters indicate significant differences among groups (One-way ANOVA, with Tukey’s post hoc test, P < 0.05).

Fig. 2. BAT transplantation reverses PCOS metabolic abnormality. An infrared thermal image demonstrates that cold exposure significantly reduced
body temperature of the DHEA+sham and DHEA+Mus groups whereas BAT transplantation significantly reversed DHEA-induced body temperature
reduction (A and B). In addition, BAT transplantation significantly increased whole-body energy expenditure compared with the DHEA+sham or
DHEA+Mus groups (C and D). Moreover, results from a glucose tolerance test (E ) and insulin tolerance test (F ) showed that BAT transplantation
significantly reversed DHEA-induced glucose intolerance. Data were analyzed by one-way ANOVA with Tukey’s post hoc test. n = 8–10 per group.
(A and B) P < 0.05. Different lowercase letters indicate significant differences among groups (One-way ANOVA, with Tukey’s post hoc test, P < 0.05).
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phenotypes and the treatment of PCOS. In the current study,
we show that BAT activity was dramatically reduced in a
dehydroepiandrosterone (DHEA) (a precursor of androgen)-
induced PCOS rat compared with a normal control rat. Nota-
bly, the key features of PCOS, such as insulin resistance,
irregular estrous cycle, and low birth rate, were significantly
improved after BAT transplantation in PCOS rats. Interest-
ingly, transplanted BAT in PCOS rats enhanced endogenous
BAT activity and thereby increased the circulating adiponectin
level, which was lower in both PCOS patients and PCOS rats. In
parallel, exogenous adiponectin protein administration in a
PCOS rat recapitulated the effects that were seen in a BAT-
transplanted PCOS rat. Taken together, these data suggest that
BAT is one of the important organs regulating the features of
PCOS and that the increase of BAT mass or its activity might
provide a new therapeutic strategy for the treatment of PCOS.

Materials and Methods
All animal studies were conducted with the approval of the Institutional
Animal Care and Use Committee of the Institute of Zoology, Chinese
Academy of Sciences. Tissue (0.5 g of BAT or muscle) transplantation ex-
periments were performed in a DHEA-induced PCOS rat. Recombinant adi-
ponectin [10 μg/kg body weight (BW)] was daily injected into a PCOS rat.
Written informed consent was obtained from all participants and this study
was approved by the Institutional Review Board of Reproductive Medicine
of Shandong University. Please refer to SI Materials and Methods for
detailed information.

Results
BAT Transplantation Reverses Reduced BAT Activity and Metabolic
Abnormality in the PCOS Rat. Accumulating evidence indicates
that insulin resistance is one of the most common clinical features
in PCOS (20) and that insulin resistance is often accompanied

with reduced BAT activity (21). Therefore, we hypothesized that
BAT mass and/or its activity might be associated with PCOS
phenotypes, including polycystic ovaries, hyperandrogenism,
and chronic anovulation. To prove our hypothesis, a rat was daily
injected with DHEA for 20 d and then the irregular estrous cycle
was analyzed by vaginal smear check to confirm the development
of PCOS. Next, we transplanted 0.5 g of BAT from an age- and sex-
matched donor rat into a PCOS rat (DHEA+BAT), and three
other groups—a PBS-treated (control) group, a sham-operated
(DHEA+sham) group, or a skeletal muscle-transplanted
(DHEA+Mus) group—served as control groups. At 3 wk after
tissue transplantation, BAT activity was assessed with positron
emission tomography–computed tomography (PET-CT). Results
from PET-CT showed that BAT activity was significantly reduced
in DHEA+sham and DHEA+Mus groups than in the control
group; however, BAT transplantation into a DHEA-induced
PCOS rat dramatically increased endogenous BAT activity up to
the level of the control group (Fig. 1 A and B). Although obesity is
a key feature of PCOS, there was no significant difference of body
weight as well as food consumption among groups in the current
study (Fig. S1). Uncoupling protein 1 (UCP1) is a BAT-specific
protein that dissipates the proton electrochemical gradient in
mitochondria to generate heat (22). Peroxisome proliferator ac-
tivated receptor gamma coactivator 1 alpha (PGC1α) and perox-
isome proliferator activated receptor gamma coactivator 1 beta
(PGC1β) induce the expression of UCP1 and mitochondria ther-
mogenesis-related genes (22). Peroxisome proliferator activated
receptor alpha (PPARα) is a major regulator of lipid metabolism
(23). Type II iodothyronine deiodinase (Dio2) is a marker gene of
BAT activation (24). Therefore, we analyzed the gene expression
levels of these genes to assess BAT thermogenic activity. In par-
allel to BAT activity results, BAT-specific gene expressions were
significantly decreased in DHEA+sham and DHEA+Mus

Fig. 3. BAT transplantation reverses PCOS acyclicity, ovarian phenotypes, and infertility. BAT transplantation could reverse abnormal estrous cycles in the PCOS
rodent compared with abnormal estrous cycles in the DHEA+sham and/or DHEA+Mus groups (A). BAT transplantation further significantly reversed the con-
centrations of luteinizing hormone (LH) levels, as well as the LH/FSH ratio, to normal control levels compared with the DHEA+sham and DHEA+Mus groups (B and
C). (D) Ovarian histology revealed that cystic follicles (arrow) appeared in the DHEA+sham and DHEA+Mus groups but not in the DHEA+BAT group. In addition,
few corpora lutea (CL, asterisk) and low levels of TH expression were observed in the BAT transplantation group but not in the muscle transplantation group (D).
Consistent with histology results, the expression of ovarian steroidogenic enzymes was dramatically reversed after BAT transplantation (E), and the DHEA+BAT
group rats, but not the DHEA+sham and DHEA+Mus group rats, were also able to mate with proven stud males and produce a little (F). Data were analyzed by
one-way ANOVAwith Tukey’s post hoc test. n = 8–10 per group. Different lowercase letters indicate significant differences among groups (One-way ANOVA, with
Tukey’s post hoc test, P < 0.05). D, diestrus; E, estrus; M, metestrus; P, proestrus.
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groups compared with control and DHEA+BAT groups (Fig. 1C).
Moreover, UCP1 and OXPHOS protein expressions were also
increased in the DHEA+BAT group compared with DHEA+sham
or DHEA+Mus groups (Fig. 1 D and E). It has been reported that
postprandial thermogenesis is decreased in PCOS patients (25). In
our PCOS rat model, body temperature after cold exposure was
significantly decreased in DHEA+sham and DHEA+Mus groups
whereas BAT transplantation significantly reversed DHEA-
mediated body temperature reduction (Fig. 2 A and B). In addition,
BAT transplantation, not sham operation or skeletal muscle trans-
plantation, significantly improved energy expenditure in a DHEA-
induced PCOS rat (Fig. 2 C and D). Consequently, glucose
homeostasis and insulin sensitivity were dramatically improved
in the DHEA+BAT group compared with DHEA+sham or
DHEA+Mus groups (Fig. 2 E and F and Fig. S2). These results
suggest that BAT transplantation reverses endogenous BAT
activity and insulin resistance in the DHEA-induced PCOS rat.

BAT Transplantation Reverses PCOS Acyclicity. As mentioned above,
irregular menstruation is one of the key criteria for the diagnosis
of PCOS. We therefore investigated whether BAT transplantation
could regulate the estrous cycle in a PCOS rat. After DHEA
treatment, acyclicity detected by vaginal cytology was found in
the DHEA+sham group and not in the control group, indicating
that a rat PCOS model had been successfully developed (Fig. 3A
and Table S1). Surprisingly, BAT transplantation normalized
menstrual cyclicity in 7 out of 10 DHEA-induced PCOS rats,
which was not found in the DHEA+Mus group (Fig. 3A and
Table S1). These results highlighted that BAT transplantation
could reverse abnormal estrous cycles in the PCOS rat. Abnormal
estrous is accompanied with altered plasma gonadotropin con-
centration. Although plasma follicle-stimulating hormone (FSH)
concentration was not altered among groups, plasma-luteinizing

hormone (LH), as well as the LH/FSH ratio, which is one of the
parameters for the diagnosis of PCOS in clinics, was significantly
increased in DHEA+sham and DHEA+Mus groups compared
with the control group. Notably, BAT transplantation reversed the
plasma LH level and LH/FSH ratio to a normal level (Fig. 3 B and
C). Additionally, the plasma testosterone (T) level was significantly
attenuated after BAT transplantation in a DHEA-induced PCOS
rat. Taken together, these results indicated that BAT transplan-
tation reversed irregular estrous cyclicity in the PCOS rat.

PCOS Ovarian Phenotypes and Infertility Were Reversed by BAT
Transplantation. Histologically, the number of corpora lutea
(CL) was decreased and the thickness of the theca cell layer
was increased in DHEA+sham and DHEA+Mus groups
compared with the control group (Table S2). However, a
normal layer of theca cells, mature follicles, and corpus luteum
(CL) were observed in the ovary from the DHEA+BAT group
(Fig. 3D and Table S2). Previous studies demonstrated that
ovarian sympathetic tone was increased in women with PCOS (26,
27). Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the
biosynthesis of norepinephrine (NE), and expression of TH in the
ovary is highly restricted to sympathetic nerves. Thus, ovarian
tissue sections from four groups were immunostained with an
anti-TH antibody to detect sympathetic innervation. A large
number of TH-positive sympathetic nerve fibers were found in
ovaries from the DHEA+sham and DHEA+Mus groups whereas
BAT transplantation significantly reduced the number of TH-
expressing sympathetic nerve fibers in the ovaries (Fig. 3D).
Consistent with immunostaining results, the expressions of ovarian
steroidogenic enzymes, such as P450C17, aromatase, 3β-HSD, 17β-
HSD, and STAR, were significantly decreased in the DHEA+sham
and DHEA+Mus groups compared with the control group, and
BAT transplantation dramatically reversed their expressions

Fig. 4. Adiponectin recapitulates the beneficial effects of BAT transplantation. Adiponectin treatment could significantly increase endogenous BAT activity compared
with DHEA groups as evidenced by PET-CT (A and B). Moreover, Infrared thermal images demonstrated that adiponectin treatment significantly reversed DHEA-
mediated body temperature reduction (C and D). A glucose tolerance test (E) and insulin tolerance test (F) showed that adiponectin treatment significantly improved
DHEA -induced insulin resistance (inner graph indicating area under the curve of GTT and ITT, respectively). Data were analyzed by one-way ANOVAwith Tukey’s post
hoc test; n = 6 per group. Different lowercase letters indicate significant differences among groups (One-way ANOVA, with Tukey’s post hoc test, P < 0.05).
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up to normal levels (Fig. 3E). In particular, rats in the DHEA+
sham and DHEA+Mus groups were infertile and unable to give
birth to a litter; however, BAT transplantation enabled the PCOS
rat to deliver a litter (Fig. 3F and Table S3). Collectively, these
results indicate that BAT transplantation could significantly re-
verse infertility in the PCOS rat.

Administration of Adiponectin Recapitulates the Beneficial Effects of
BAT Transplantation in the PCOS Rat. In our previous study, we
showed that transplanted BAT activated endogenous BAT and
increased the circulating adiponectin level in an obese mouse (17).
Thus, we determined whether the adiponectin level is altered in
the PCOS human and rat. Consistent with a previous report
(28), the circulating adiponectin level was significantly de-
creased in both the PCOS patient and rat (Fig. S3 A and B and
Table S4). Therefore, we reasoned that adiponectin might ac-
count, at least in part, for the beneficial effects of BAT trans-
plantation in the PCOS rat. To address this question, a PCOS
rat was daily injected with recombinant adiponectin protein
(10 μg/kg BW) for 20 d. Results from PET-CT (Fig. 4 A and B), as
well as cold-induced thermogenesis (Fig. 4 C and D), showed that
administration of adiponectin in a PCOS rat significantly in-
creased endogenous BAT activity up to the level of the control
group. Similar to BAT transplantation, adiponectin treatment also
increased energy expenditure and glucose homeostasis in the
PCOS rat (Fig. 4 E and F). In addition, adiponectin treatment
markedly attenuated the plasma LH/FSH ratio that was increased
in the DHEA+sham group (Fig. 5 A and B). Interestingly, adi-
ponectin treatment significantly reversed DHEA-induced acy-
clicity (Fig. 5C and Table S5), ovarian phenotypes (Table S5), and
infertility in the PCOS rat (Fig. 5D and Table S5). These results
highlight that the beneficial effects of BAT transplantation are
partly mediated by an elevated circulating adiponectin level.

Discussion
In the current study, we showed that BAT activity was dramat-
ically decreased in the PCOS rat and that BAT transplantation
effectively ameliorated most of the symptoms found in the PCOS

rat. In addition, we revealed that the beneficial effects of BAT
transplantation in the PCOS rat were mediated by the increased
circulating adiponectin level. To the best of our knowledge, this
study is the first study showing that the activity of BAT is asso-
ciated with clinical phenotypes of PCOS in an animal model. We
believe that the current study points out BAT as a previously
unidentified target organ for the treatment of PCOS.
Mice neonatally androgenized with testosterone that induces

PCOS showed a significant decrease in energy expenditure (29).
It has been speculated that this phenomenon could be due to the
BAT hypofunction (30). In agreement with previous findings,
BAT-specific thermogenic gene expression, UCP1, and mito-
chondrial OXPHOS protein expression and cold-induced ther-
mogenic capacity, which are key factors accounting for the
reduction of energy metabolism, were reduced in our PCOS rat
(Fig. 1), indicating that the DHEA-induced PCOS rat had a
significant defect in energy metabolism and BAT activity.
In parallel, it was also reported that women with PCOS show

increased sympathetic tone (31). Consistently, we observed that
sympathetic innervation, as evidenced by TH staining, was in-
creased in the ovaries of the DHEA-treated PCOS rat (Fig. 2C).
Sustained high sympathetic tone causes insensitivity of BAT and
later influences disrupted whole-body energy metabolism in
PCOS. Taken together, these results suggest that the attenuation
of BAT activity might play a significant pathogenic role in PCOS.
It has been widely appreciated that women with PCOS show

insulin resistance and glucose intolerance (32). On the other
hand, BAT activity is often negatively associated with diabetes
status but positively correlated with glucose uptake activity
in humans (33). Recently, we demonstrated that BAT trans-
plantation has a beneficial effect on the prevention and treat-
ment of obesity in the HFD-induced obese mouse, as well as in
the genetic obese Ob/Ob mouse (17, 18). In addition, we showed
that BAT transplantation significantly improved glucose ho-
meostasis in both diet-induced obesity and genetic obesity mice
models (17, 18). In agreement with previous results, we observed
that DHEA-induced glucose intolerance was significantly re-
versed by transplantation of BAT, but not muscle (Fig. 2 E and F).

Fig. 5. Adiponectin reverses PCOS acyclicity, ovarian phenotypes, and infertility. The concentrations of luteinizing hormone (LH) and the LH/FSH ratio were significantly
increased in the DHEA group compared with the control group, and it was reversed to a normal level after adiponectin treatment (A and B). In addition, adiponectin
treatment could significantly reverse DHEA-induced acyclicity (C) and pregnant capacity in the PCOS rodent (D). Data were analyzed by one-way ANOVA with Tukey’s
post hoc test. n = 6 per group. Different lowercase letters indicate significant differences among groups (One-way ANOVA, with Tukey’s post hoc test, P < 0.05).
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These results again emphasize the important role of BAT in glucose
homeostasis.
The remaining question we had was how the transplanted

BAT displayed beneficial effects on PCOS. We speculated that
the beneficial effects of BAT transplantation might be from
activated endogenous BAT that might secret systemic brown
adipose tissue-derived adipokine (batokine). In our previous
report, we demonstrated that BAT transplantation in obese
mice significantly increased the circulating adiponectin level
(17), which is known to be attenuated in women with PCOS
(34). Consistently, we also confirmed that there was a signifi-
cant reduction of the circulating adiponectin level in both
PCOS women and the DHEA-treated rats. Interestingly, we
found that the adiponectin level was significantly reversed to
normal level after BAT transplantation (Fig. S3 A and B).
These results led us to investigate whether adiponectin ad-
ministration recapitulates the beneficial effects of BAT trans-
plantation in the PCOS rat. After adiponectin treatment,
decreased BAT activity, metabolic abnormalities, acyclicity,
and abnormal hormonal levels were surprisingly normalized up
to normal levels in the PCOS rat. Based on recent publications,
BAT also secretes a considerable number of adipokines, such as
adiponectin, FGF21, NGF, NRG4, VEGF, and BMPs (16, 35).
We have observed that there was no significant difference of
FGF21 or NGF levels between groups (Table S6). Gunawardana
et al. (36) reported that BAT transplantation can reverse type 1
diabetes in streptozotocin-treated mice without exogenous in-
sulin treatment. Furthermore, we and other group have shown
that BAT transplantation reversed metabolic disorders in various

obese mouse models (17–19). These results further suggest
that BAT secretes systemic mediators that could regulate in
whole-body glucose homeostasis. It should be noted that we do
not exclude other factors mentioned above that may be involved
in the beneficial effects of BAT transplantation in the PCOS rat
model. However, in our hands, we observed that adiponectin alone
was enough to recapitulate the beneficial effects of BAT trans-
plantation in the PCOS rat. Other mechanisms behind the adipo-
nectin effect for the treatment of PCOS would be necessary to be
revealed in the near future. Taken together, our findings highlight
that systemic adiponectin treatment significantly improves PCOS
phenotypes in an animal model.
In conclusion, we demonstrate here that BAT transplantation

could significantly improve PCOS phenotypes, including disrupted
energy metabolism, acyclicity, and infertility. In addition, these
beneficial effects of BAT transplantation were at least in part
mediated by systemic adiponectin. Because BAT transplantation
is not easily applied to human beings, administration of bato-
kines or drugs that enhance BAT activity will be alternative
strategies for the treatment of PCOS.
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